
Copyright(C)2006 NTT Data Intellilink Corporation 1

Reinitialization of devices Reinitialization of devices
after a kexec rebootafter a kexec reboot

2006/7/21

NTT Data Intellilink Corporation
Fernando Luis Vázquez Cao

Copyright(C)2006 NTT Data Intellilink Corporation 2

 Purpose of this BOFPurpose of this BOF

Discuss main inhibitor to kexec/kdump adoption:
reinitialization of devices in the second kernel

Present possible approaches to solve the device
reinitialization problem

Propose a solution

Reach a consensus

Copyright(C)2006 NTT Data Intellilink Corporation 3

 AgendaAgenda

1. Kexec/kdump reboot

2. Device reinitialization

3. Tackling device reinitialization

• Device black list

• Device / bus reset

• Device hardening

4. Solution proposal

11．．kexec/kdump rebootkexec/kdump reboot

Copyright(C)2006 NTT Data Intellilink Corporation 4

Copyright(C)2006 NTT Data Intellilink Corporation 5

1.1. Standard boot process1.1. Standard boot process

hardware stage

working

power on

firmware stage

boot loader

kernel stage

machine shutdown

re
bo

ot

shutdown -r

device shutdown

HW reset

Copyright(C)2006 NTT Data Intellilink Corporation 6

1.2. Kexec boot process1.2. Kexec boot process

hardware stage

working

power on

firmware stage

boot loader

kernel stage

machine shutdown

kexec

working

kernel stage

fir
st

 k
e

rn
e l

se
co

nd
 k

er
ne

l

device shutdown

HW reset

Copyright(C)2006 NTT Data Intellilink Corporation 7

1.3. Kdump boot process1.3. Kdump boot process

hardware stage

working

power on

firmware stage

boot loader

kernel stage

working

kernel stage

crash

 minimal machine shutdown

se
co

nd
 k

er
ne

l

fir
st

 k
er

ne
l

HW reset

22．．device reinitializationdevice reinitialization

Copyright(C)2006 NTT Data Intellilink Corporation 8

Copyright(C)2006 NTT Data Intellilink Corporation 9

2.1. Device reinitialization issue2.1. Device reinitialization issue

State of devices after a kdump boot

➢ No device shutdown in the crashing kernel

➢ Firmware stage of the boot process is skipped
✗ Devices are not reset

➢ Devices might be operational or in an unknown state

Copyright(C)2006 NTT Data Intellilink Corporation 10

2.1. Device reinitialization issue2.1. Device reinitialization issue (cont) (cont)

Drivers assume that the devices have been reset
and/or that some pre-initialization has been
performed

➢ Drivers find devices in an unexpected state or receive
an interrupt from the previous kernel's context
✗ Drivers fail or raise an oops because this is an

anomalous situation

33．．tackling device tackling device
reinitializationreinitialization

Copyright(C)2006 NTT Data Intellilink Corporation 11

Copyright(C)2006 NTT Data Intellilink Corporation 12

3.1. Tackling device reinitialization3.1. Tackling device reinitialization

hardware stage

working

power on

firmware stage

boot loader

kernel stage

 minimal machine shutdown

working

?

crash

kernel stagefir
st

 k
er

ne
l

se
co

nd
 k

er
ne

l

 minimal machine shutdown

HW reset

Copyright(C)2006 NTT Data Intellilink Corporation 13

3.2. Possible solutions3.2. Possible solutions

Make black list of drivers that are known to have
problems

Device reset (device soft-reset, PCI bus reset)

Driver hardening to be able to initialize in
potentially unreliable environments

Copyright(C)2006 NTT Data Intellilink Corporation 14

3.3. Device reset3.3. Device reset

Two possibilities
➢ Individual device soft-reset
➢ Bus resets (PCI, etc)

Problems
➢ Individual device soft-reset

✗ May need to configure undocumented device
registers

✗ Not all devices have this capability
✗ It is a time-consuming operation in some devices

➢ PCI bus reset
✗ Reset functionality not supported by all PCI buses

Copyright(C)2006 NTT Data Intellilink Corporation 15

3.4. Driver hardening3.4. Driver hardening

Things that can be done to initialize a device in
an unreliable environment

➢ Add hacks to the initialization code

➢ Relax driver's consistency checks

➢ Put devices into a good known state before proceeding
with standard initialization (device pre-configuration)

44．．a new approacha new approach

Copyright(C)2006 NTT Data Intellilink Corporation 16

Copyright(C)2006 NTT Data Intellilink Corporation 17

4.1. Device pre-configuration4.1. Device pre-configuration

How do we restore devices to a good state after a
soft-boot?

1. Documentation available: follow the manual

2. No documentation available: need to find out a good
configuration

During a normal boot the firmware performs part
of the configuration and the driver does the rest

➢ Need an infrastructure in the second kernel doing the
job the firmware does during a regular boot?

Copyright(C)2006 NTT Data Intellilink Corporation 18

4.2. Device configuration restoration4.2. Device configuration restoration

Save/restore device configuration

➢ After a normal boot through the firmware save the
configuration of all devices before trying to initialize
them in the kernel stage of the boot process

➢ In the event of a crash pass this information to the
second kernel (infrastructure needed)

➢ Use this information to pre-configure devices
✗ This simulates the work done by the firmware
✗ Look for inspiration from suspend/resume code

➢ Proceed with the standard initialization

kdump boot

Copyright(C)2006 NTT Data Intellilink Corporation 19

4.2. Device configuration restoration4.2. Device configuration restoration

Save/restore device configuration

➢ After a normal boot through the firmware save the
configuration of all devices before trying to initialize
them in the kernel stage of the boot process

➢ In the event of a crash pass this information to the
second kernel (infrastructure needed)

➢ Use this information to pre-configure devices
✗ This simulates the work done by the firmware
✗ Look for inspiration from suspend/resume code

➢ Proceed with the standard initialization

kdump boot

Copyright(C)2006 NTT Data Intellilink Corporation 20

4.3. Tackling device reinitialization4.3. Tackling device reinitialization

hardware stage

working

power on

firmware stage

boot loader

kernel stage

 minimal machine shutdown
working

device reset/restore

crash

kernel stage

fir
st

 k
er

ne
l

se
co

nd
 k

er
ne

l

struct device_driver {

 int (*probe)(...);
 void (*remove)(...);
 void (*shutdown)(...);
 int (*suspend)(...);
 int (*resume)(...);
 int (*save_state)(...);
 int (*preinit)(...);
};

- reset_devices
- saved states

Copyright(C)2006 NTT Data Intellilink Corporation 21

4.4. Discussions topics4.4. Discussions topics

Need to notify the kernel that it is booting into a
special environment?

Need to pass configuration information between
the first and the second kernel?

➢ Infrastructure to pass information to second kernel

➢ New function callback in device drivers to save the
configuration as performed by the firmware (does not
have to be provided)

➢ preinit function callback to be invoked when
reset_devices has been set
✗ Soft-reset or pre-configure devices when possible

Copyright(C)2006 NTT Data Intellilink Corporation 22

Thanks for your attentionThanks for your attention

Contact:Contact: fernando@intellilink.co.jpfernando@intellilink.co.jp

mailto:fernando@intellilink.co.jp

Copyright(C)2006 NTT Data Intellilink Corporation 23

1.1. kexec reboot1.1. kexec reboot

Physical memory

HD

kernel image

kernel image is
loaded into
dynamic kernel
memory with
sys_kexec

using reboot path
control is handed
over to the second
kernel

kernel image is
copied to its final
destination

parameter segment

purgatory

reboot

host kernelsecond kernel

Copyright(C)2006 NTT Data Intellilink Corporation 24

1.2. kexec-based crash dumping1.2. kexec-based crash dumping

Physical memory

HD

dump kernel

Reserved memory
area for dump kernel

crash

dump kernel
load

using kdump
control is handed
to dump kernel

kernel crash dump
image is copied to the
designed location

reserved memory area
dump kernel

backup region
parameter segment

purgatory

kdump

host kernel

Copyright(C)2006 NTT Data Intellilink Corporation 25

2.2. Device reinitialization failure cases2.2. Device reinitialization failure cases

Example 1

➢ After the first kernel crash the device is operational
and sending interrupts

➢ The driver loads

➢ Underlying device sends an interrupt indicating
completion of a command issued from the previous
kernel's context

➢ Driver does not know anything about it

➢ Driver raises BUG() as this is anomalous

Copyright(C)2006 NTT Data Intellilink Corporation 26

2.2. Device reinitialization failure cases2.2. Device reinitialization failure cases

Example 2

➢ SCSI controller is left with interrupt line asserted and
reply FIFO is not empty

➢ Driver starts initializing in the second kernel

➢ Driver receives the interrupt the moment request_irq()
is called

➢ Interrupt handler reads the message from reply FIFO

➢ Interrupt handler tries to access the associated
message frame

➢ The message frame is not valid in the new kernel's
context so the kernel panics

Copyright(C)2006 NTT Data Intellilink Corporation 27

3.2. Changing initialization behavior3.2. Changing initialization behavior

A change in the normal initialization process can
be initiated in two ways:

➢ Make kernel kexec/kdump aware
✗ Notify boot method to the second kernel using a

kernel boot option
✗ Should device reset be executed by default?

➢ Look at the devices/controllers and see if they are in a
bad/unexpected state

Copyright(C)2006 NTT Data Intellilink Corporation 28

3.3. Device reset – device soft-reset3.3. Device reset – device soft-reset

Soft-reset the device before proceeding with rest
of the initialization
➢ The device flushes the messages issued from the

previous kernel's context (if supported)
➢ Resume initialization

Problems
➢ May need to configure undocumented device registers
➢ Not all devices have this capability
➢ It is a time-consuming operation in some devices

✗ Firmware and self-test operations in SCSI
controllers may be on the order of minutes

Copyright(C)2006 NTT Data Intellilink Corporation 29

3.4. Device reset – PCI bus reset3.4. Device reset – PCI bus reset

Set the PCI bus reset bit in the PCI bridge to so
initiate the PCI bus reset

Requires firmware/BIOS to export hook to SW

Problems
➢ Reset functionality is not supported by all PCI buses
➢ Might be ignored by devices
➢ Potentially unsafe in legacy systems

✗ Might affect the memory bus too

Copyright(C)2006 NTT Data Intellilink Corporation 30

3.6. Dump kernel – APICs3.6. Dump kernel – APICs

Current APICs partial reinitialization code assumes they
work properly
➢ Problems with broken BIOSes and old systems: the

system stops receiving timer interrupts

Restore APICs to its original status (i.e. as
configured by the BIOS)
➢ Properly reinitializes the APICs even in machines with

a broken BIOS a
➢ Requires relocation to BSP

✗ Can do SMP (on i386, x86_64) b
✗ Inter-CPU NMIs used for relocation ignored in

some machines (c)
➢ Trade-off between (a,b) and (c)

