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  Purpose of this BOFPurpose of this BOF

Discuss main inhibitor to kexec/kdump adoption: 
reinitialization of devices in the second kernel

Present possible approaches to solve the device 
reinitialization problem

Propose a solution

Reach a consensus
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        AgendaAgenda

1. Kexec/kdump reboot

2. Device reinitialization

3. Tackling device reinitialization

• Device black list

• Device / bus reset

• Device hardening

4. Solution proposal
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1.1. Standard boot process1.1. Standard boot process
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1.2. Kexec boot process1.2. Kexec boot process
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1.3. Kdump boot process1.3. Kdump boot process
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2.1. Device reinitialization issue2.1. Device reinitialization issue

State of devices after a kdump boot

➢ No device shutdown in the crashing kernel

➢ Firmware stage of the boot process is skipped
✗ Devices are not reset

➢ Devices might be operational or in an unknown state
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2.1. Device reinitialization issue2.1. Device reinitialization issue (cont) (cont)

Drivers assume that the devices have been reset 
and/or that some pre-initialization has been 
performed

➢ Drivers find devices in an unexpected state or receive 
an interrupt from the previous kernel's context
✗ Drivers fail or raise an oops because this is an 

anomalous situation



  

33．．tackling device tackling device 
reinitializationreinitialization
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3.1. Tackling device reinitialization3.1. Tackling device reinitialization
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3.2. Possible solutions3.2. Possible solutions

Make black list of drivers that are known to have 
problems

Device reset (device soft-reset, PCI bus reset)

Driver hardening to be able to initialize in 
potentially unreliable environments
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3.3. Device reset3.3. Device reset

Two possibilities
➢ Individual device soft-reset
➢ Bus resets (PCI, etc)

Problems
➢ Individual device soft-reset

✗ May need to configure undocumented device 
registers

✗ Not all devices have this capability
✗ It is a time-consuming operation in some devices

➢ PCI bus reset
✗ Reset functionality not supported by all PCI buses
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3.4. Driver hardening3.4. Driver hardening

Things that can be done to initialize a device in 
an unreliable environment

➢ Add hacks to the initialization code

➢ Relax driver's consistency checks

➢ Put devices into a good known state before proceeding 
with standard initialization (device pre-configuration)



  

44．．a new approacha new approach
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4.1. Device pre-configuration4.1. Device pre-configuration

How do we restore devices to a good state after a 
soft-boot?

1. Documentation available: follow the manual

2. No documentation available: need to find out a good 
configuration

During a normal boot the firmware performs part 
of the configuration and the driver does the rest

➢ Need an infrastructure in the second kernel doing the 
job the firmware does during a regular boot?
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4.2. Device configuration restoration4.2. Device configuration restoration

Save/restore device configuration

➢ After a normal boot through the firmware save the 
configuration of all devices before trying to initialize 
them in the kernel stage of the boot process

➢ In the event of a crash pass this information to the 
second kernel (infrastructure needed)

➢ Use this information to pre-configure devices
✗ This simulates the work done by the firmware
✗ Look for inspiration from suspend/resume code

➢ Proceed with the standard initialization

kdump boot
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4.3. Tackling device reinitialization4.3. Tackling device reinitialization
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struct device_driver {
 .....
 int  (*probe)(...);
 void (*remove)(...);
 void (*shutdown)(...);
 int  (*suspend)(...);
 int  (*resume)(...);
 int  (*save_state)(...);
 int  (*preinit)(...);
};

- reset_devices
- saved states
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4.4. Discussions topics4.4. Discussions topics

Need to notify the kernel that it is booting into a 
special environment?

Need to pass configuration information between 
the first and the second kernel?

➢ Infrastructure to pass information to second kernel

➢ New function callback in device drivers to save the 
configuration as performed by the firmware (does not 
have to be provided)

➢ preinit function callback to be invoked when 
reset_devices has been set
✗ Soft-reset or pre-configure devices when possible
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Thanks for your attentionThanks for your attention

Contact:Contact: fernando@intellilink.co.jpfernando@intellilink.co.jp

mailto:fernando@intellilink.co.jp
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1.1. kexec reboot1.1. kexec reboot
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1.2. kexec-based crash dumping1.2. kexec-based crash dumping
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2.2. Device reinitialization failure cases2.2. Device reinitialization failure cases

Example 1

➢ After the first kernel crash the device is operational 
and sending interrupts

➢ The driver loads

➢ Underlying device sends an interrupt indicating 
completion of a command issued from the previous 
kernel's context

➢ Driver does not know anything about it

➢ Driver raises BUG() as this is anomalous



Copyright(C)2006 NTT Data Intellilink Corporation        26

2.2. Device reinitialization failure cases2.2. Device reinitialization failure cases

Example 2

➢ SCSI controller is left with interrupt line asserted and 
reply FIFO is not empty

➢ Driver starts initializing in the second kernel

➢ Driver receives the interrupt the moment request_irq() 
is called

➢ Interrupt handler reads the message from reply FIFO

➢ Interrupt handler tries to access the associated 
message frame

➢ The message frame is not valid in the new kernel's 
context so the kernel panics



Copyright(C)2006 NTT Data Intellilink Corporation        27

3.2. Changing initialization behavior3.2. Changing initialization behavior

A change in the normal initialization process can 
be initiated in two ways:

➢ Make kernel kexec/kdump aware
✗ Notify boot method to the second kernel using a 

kernel boot option
✗ Should device reset be executed by default?

➢ Look at the devices/controllers and see if they are in a 
bad/unexpected state
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3.3. Device reset – device soft-reset3.3. Device reset – device soft-reset

Soft-reset the device before proceeding with rest 
of the initialization
➢ The device flushes the messages issued from the 

previous kernel's context (if supported)
➢ Resume initialization

Problems
➢ May need to configure undocumented device registers
➢ Not all devices have this capability
➢ It is a time-consuming operation in some devices

✗ Firmware and self-test operations in SCSI 
controllers may be on the order of minutes
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3.4. Device reset – PCI bus reset3.4. Device reset – PCI bus reset

Set the PCI bus reset bit in the PCI bridge to so 
initiate the PCI bus reset

Requires firmware/BIOS to export hook to SW

Problems
➢ Reset functionality is not supported by all PCI buses
➢ Might be ignored by devices
➢ Potentially unsafe in legacy systems

✗ Might affect the memory bus too
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3.6. Dump kernel – APICs3.6. Dump kernel – APICs

Current APICs partial reinitialization code assumes they 
work properly
➢ Problems with broken BIOSes and old systems: the 

system stops receiving timer interrupts

Restore APICs to its original status (i.e. as 
configured by the BIOS)
➢ Properly reinitializes the APICs even in machines with 

a broken BIOS a
➢ Requires relocation to BSP

✗ Can do SMP (on i386, x86_64) b
✗ Inter-CPU NMIs used for relocation ignored in 

some machines (c)
➢ Trade-off between (a,b) and (c)


